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ABSTRACT 

The effects of density variation and body force on the stability of a 
heterogeneous horizontal shear layer are investigated. The density is 
assumed to decrease exponentially with height, and the body force is 
assumed to be derivable from a potential; the velocity distribution in the 
shear layer is taken to be U(y) = tanh y. The method of small disturb- 
ances is employed to obtain a family of neutral stability curves depending 
on the choice of the Richardson number. It is demonstrated, furthermore, 
that the value of the critical Richardson number depends on the magni- 
tude of the nondimensional density gradient. 

1. INTRODUCTION 

It is a frequent occurrence in nature that two fluids 
of different densities flow one on top of the other. If the 
flow is predominantly horizontal, and if the density 
diminishes rapidly upward (e.g., in a mass of air with 
the temperature increasing with height, such as the 
“infamous” Los Angeles inversion layer), then the proc- 
ess of turbulent mixing must cause heavier fluid ele- 
ments to be moved above lighter ones and lighter fluid 
elements below heavier ones. Both displacements con- 
sume energy that has to be extracted from the mean 
flow at the expense of energy that might be available for 
the maintenance of turbulence.8 The same considerations 
apply quite generally to work against any body force. 
The present report is one of a series of researches (see, 
e.g., Refs. 2-6) undertaken to establish the limits of 
stability of a shear flow in a stably stratified medium. 

‘*This argument, which follows Prandtl’s exposition (Ref. 1, p. 
131), presupposes that the total kinetic energy can be resolved into 
two terms: one term represents the contribution of the mean flow 
and the other the turbulent Reynolds stresses. The energy partition 
is assumed to be unaffected by the density stratification. 

Whenever one looks into a problem in fluid mechanics, 
one is bound to discover sooner or later that G. I. Taylor, 
Prandtl, or von KhrmAn has already considered the 
problem and deduced the most important features by 
simple physical reasoning. The present subject is an 
exception because both Taylor and Prandtl have not only 
considered, but have looked into, this problem. In a 
paper written in 1929 Prandtl (Ref. 2 )  relates some 
observations made on “pleasant summer evenings” con- 
cerning the stabilizing influence of a density gradient 
on the wind turbulence near the ground. By an ele- 
mentary consideration of the balance of forces at play, 
he arrived at a criterion for stability ( in  the notation of 
the present paper): 

L 
I - > 1  

where L represents a dimensionless density gradient and 
J is a Richardson number. 

The present, albeit laborious, analysis confirms 
Prandtl‘s conjecture that was made, so to say, on the 
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back of an old envelope. The physical mechanism under- 
lying the phenomenon, as it happens frequently, is 
quite simple, and order-of-magnitude estimates can be 
given provided there is sufficient physical insight into 
the problem. However, a quantitative description of the 
phenomenon involves considerably more labor. Such an 
analysis was made by Taylor (Ref. 3 )  using the method 
of small disturbances. It is well known that the use of 
small, actually infinitesimal, harmonic disturbances per- 
mits a linearization of the unsteady equations of motion 
about the steady state. The steady-state velocity distri- 
bution and possibly some of its derivatives appear in the 
linearized disturbance equation as coefficients. The time- 
dependent part of the equation can usually split off, leav- 
ing an ordinary differential equation. The solution to an 
ordinary differential equation with non-constant coeffi- 
cients can ordinarily be given only in terms of an infinite 
series. For purposes of analytical manipulation in general 
and stability investigation in particular, a series solution 
is quite unwieldy. To simplify the coefficients, the veloc- 
ity profile used by Taylor was made up of straight-line 
segments yielding solutions in terms of Bessel and Hankel 
functions, which still proved to be quite difficult to 
handle. In addition to this difficulty, the presence of the 
inevitable corners in the velocity profile where the first 
derivative (i.e., the vorticity! ) changes discontinuously 
has been a source of considerable aggravation. Probably 
the most important result of Taylor’s investigation was 

the discovery of a critical value for the Richardson num- 
ber, say, J,,, such that for J > J,, no disturbances that 
satisfy the imposed boundary conditions are possible. 

Drazin ( Ref. 5 )  essentially reworked Taylor’s analysis 
and obtained one of the eigensolutions of the disturb- 
ance equation by what Courant so aptly calls the “method 
of ingenious devices.” Drazin limited himself to a very 
special case: L = 0 and the phase velocity c = 0. Those 
limitations have been removed in the present work. The 
method consists in assuming a simple differentiable 
velocity profile of the form U = tanh y, and a subsequent 
change in the independent variable from y to U .  The 
latter is reminiscent of the hodograph transformation, 
but it is not quite the same, because U(y) represents only 
one part of the velocity vector. By this transformation, 
the transcendental coefficients of the differential equation 
introduced by U(y) are reduced to algebraic ones. More- 
over, the domain of interest is shrunk from a doubly 
infinite one to one that extends from -1 to +1, a most 
desirable by-product of this transformation. Next, a 
change in the dependent variable is performed, patterned 
after the transformation due to Papperitz (Ref. 7 )  on the 
hypergeometric equation. In this form the equation 
admits of one trivial solution contingent upon certain 
constraints imposed on J ,  L,  k, and c. Those relations are 
precisely the ones required to define a neutral stability 
boundary. 
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II. ANALYSIS 

The equations of motion governing the behavior of 
an incompressibie inviscid iiuicl iiiider thc act;er? r?f a 
body force, g v y, are Euler’s equation 

The primary velocity distribution is represented by 
U(y) = tanh y, and U is introduced as the independent 
variable. We note that 2L/F = I and 

-- - vp  g v y  DU 
Dt P 

the condition of incompressibility . 
L = o  
Dt 

and the equation of continuity 

(2)  Denoting by primes differentiation with respect to U 
and setting +(y) = +(U), we obtain: 

The velocity components, the pressure, and the density 
are assumed to consist of a time-independent part and a 
perturbation: 

w4~1-e 

2 W + L )  
( U +  1) (U - 1) 

a(U)  = 

P = P o  [ P ( Y )  + P’(X,Y,t)I (4c) 

+’=+(y) e x p [ i k ( x - c t ) ]  (c=c,+ icJ ( 4 d )  

with the boundary conditions k4(U) = 0 at U = -el. 
Here, V =  U(  m ) = - U ( - 00 ), and +’ is a pertur- 
bation stream function; U(y), P(y), and p (  y )  describe 
the ambient state whose stability is to be investigated. 
Also, x = xl/d and y = yl/d, where xl and y1 are the 
physical coordinates and d is so chosen that dU/dy = 1 

Equation (7 )  is of a rather simple type. Its singular- 
ities, which are located at +1 and c, are regular singu- 
larities. It can be demonstrated that the point at infinity 
is also a regular singularity. The substitution into Eq. ( 7 )  
Of at y = 0; thus d characterizes the width of the transition 

layer. Denoting the Froude number V2/gd  by F and 
eliminating p f  and p’ from Eqs. ( l ) ,  (2 ) ,  and (3 )  yields z=(u-i)  - “ 1 ( u - ~ ) - a z ( u + 1 ) - - 4  

(u - C) (+” - k2+) - uff+ + (InF)’ (u  - C) ICI’ - (u- c)’41 

= O  ( 5 )  F U - c  

where primes denote differentiation with respect to y. 

where ai is one of the indices relative to the finite points 
of the singularity, yields an equation that has at least 
one bounded solution at each of the singularities. It is 
of the form 

- (In 3 

~ 

We now set 7: exp( -2Ly) and obtain: 

( U -  C) ($” - k2+) - U f f +  - 2L [ (U  - C) qf --(U - c)’~I] 

+ - A z o  2L 
F U - c  

(arU - r )  Z=O + (U - 1) (U-c)  (U + 1) 
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with the boundary conditions replaced by regularity 
conditions on ZU) at U = +1, and c. A sufficient con- 
dition for the existence of a trivial solution Z = constant 
(which, of course, satisfies the boundary conditions iden- 
tically) is given formally by 

O r = O  (9) 

r = O  (10) 

After a considerable amount of tedious but essentially 
straightforward algebraic manipulation, we obtain from 
Eqs. ( 9 )  and ( 10) the explicit relations: 

Page 4 

where 

R' = L2 + k2 
21 

= R2(1 - c ) ~  

21 
'= R2(1 + c ) ~  

(1 - 8J c2)2 1" [r I*.= 1- 

It is to be noted that Eqs. (11) and (12) are not 
homogeneous in any of the quantities J, L, k, and e; thus 
it is always possible to obtain a unique solution. However, 
there are two equations in four unknowns. It was found 
convenient from a computational point of view to consider 
L and R2 as the primary variables and J and c as param- 
eters. The equations were solved numerically by an itera- 
tion technique on an IBM 704 digital computer.b 

bThe author is indebted to Dr. P. Peabody for help in program- 
ming the problem for machine calculation and to Mr. R. J. Mueller 
and Mrs. M. S h e s  who carried out most of the calculations. 
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111. DISCUSSION AND RESULTS 

In the usual case the neutral stability curve represents 
possible neutral disturbances and separates the stable 
from the unstable ones, with no “forbidden” disturbances 
present anywhere.c The stability boundaries displayed 
in Fig. 1 have a meaning slightly different from that 
commonly accepted. A particular boundary separates 
unstable disturbances from stable ones and from those 
that are physically not realizable. This may be stated 
in a different way: as the boundary is approached from 
the inside along an arbitrary path one passes over pos- 
sible disturbances, and the closer one gets to the bound- 
ary the smaller will be the amplification. On the other 
hand, when the boundary is approached from the outside 
one cannot be sure whether an arbitrary path consists 
only of permitted distnrbances or not. That implies that 
the only statement that can be made about the attenua- 
tion is that if the path consisted only of a succession of 
possible disturbances, then as the boundary is ap- 
proached the attenuation decreases to vanish at the 
boundary itself. For practical purposes, however, this 
distinction is immaterial since one may still state without 

CThe existence of “forbidden” disturbances was discovered by 
Taylor (Ref. 3) .  

ambiguity the maximum value of k2 + L2 which corre- 
sponds to an unstable disturbance, for a prescribed value 

The present analysis throws into relief the dependence 
of the stability on the relative magnitudes of the wave 
number k and the parameter L. The governing quantity 
appears to be k2 + L2. The analysis of Taylor (Ref. 3)  
in which the parameter L was neglected indicated that 
as the wave number decreased, the instability became 
more pronounced. By including the effect of the density 
gradient, one can stabilize a disturbance that was shown, 
in the absence of a density gradient, to be unstable by 
virtue of its small wave number. The stabilizing effect of 
the density gradient is thus clearly demonstrated. 

The relationship that must exist between L and c, 
for given values of J, to obtain a neutral disturbance is 
displayed in Fig. 2. It is to be noted that the curves 
terminate before reaching the c-axis, thus implying that 
the only solution corresponding to L = 0 is c = 0, which 
is the one found by Drazin. 

The accepted convention of referring to a critical 
Richardson number is unfortunate because it conjures up 
similarities with the critical Reynolds number of hydro- 
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Fig. 1. Stability Boundary 
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dynamic stability theory to which it bears hardly any 
semblance. The critical Richardson number represents 
a number beyond which no virtual displacementd of the 
flow field appears possible. In this sense, then, the flow 

is stable, so to say, by default. This is certainly an odd 
result, but one that has been obtained consistently by 
Taylor, Goldstein, Drazin, and the present author. No 
physical explanation can be offered, and the mathe- 
matical one provides little solace; it only states that for 

when 
subjected to a virtual displacement. 

dThe displacement is to be taken to apply not only to spatial dis- > a physical quantity becomes 
placements but to  velocity, pressure, etc. 
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NOMENCLATURE 

functions of U determined by Eq. (7)  
b(U)  ) 

= c,. + ici = complex phase velocity 

width of transition layer 

Froude number = V2/gd 

gravitational acceleration 

Richardson number 

critical value of Richardson number 

wave number 

dimensionless density gradient 

perturbation pressure 

mean pressure 

accessory parameter (for a discussion of this, see Ref. 8 )  

one of the indices relative to the finite points of singularity ( i  z 1,2,3) 

perturbation density 

mean density 

reference density 

exponents relative to the point at infinity 

perturbation stream function 

f 
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